
4. p—s Curves

If we examinethe generalpropertiesof the distribution function
F (2) ata constantN, illustratedby the diagramsin Fig. 4, field 2,
we shall immediately find that this function is a positive, non-
decreasing--functionwhere

F(U)=O for U�0 andF(o~)=1.

Without loss of generalityF (2) may be written in the form

F (2) = 1 ~ (19)

as for everygiven distributionfunctionF, the correspondingfunction
can be uniquely determinedby

~p=—1og(1—F) (20)

E’~idently ~ (2) is apositive,non-decreasingfunction of B, satisfying
th~conditions

9(S)=OforS�U�O (21)

and

~(S)—for2--*oo (22)

The condition (21) is a very importantone, as it statesthat for
values lessthan U the probability of failure is not only very small
but exactly equalto zero. There is no doubt that this statement
correspondsto a real physical property of all existing engineering
materials.

The advantageof writing theexpressionof the distributionfunction
in the form (19) is to be found in the fact that

(23)

as will be shownin the next chapter.
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Experiencehasshown that the expression

. (24)

which satisfies (21) and (22), in many cases gives an excellent
reproductionof the observations.

It containsthree parameters,which have to be fitted to given
data.

Introducing (24) in (19) and considering(1) we have

~ ~ (25)
which by (14) gives

log log 1 = log log = log k + m log (S—U) . (26)

Ifweput 1 0

y = log log 1 _p a = log k; x = log (S — U) .... (27)

we have, in fact, a linear relation

y=a+rnx (28)

which is formally the same expressionas (18) though, of course,
with a quite different sense.

The conformityof (18) and (28) maybe extendedto the comput-
ation of their parameters.

In this case,too, it is advisableto startwith agraphicalexamin-
ation of the observations,in order to checkthe statisticalhornogenity
of the material. After this check-up, the determinationof U and
the two otherparametersis carried throughin the sameway as has
already beendemonstrated.

It shouldbe observedthat the valuesx andy in (28) are obtained
by an interpolation, as they are the intersectionsbetween the
smoothedS — N curvesanda vertical line N = constant.

Many authorshavebeenstrongly in favour of the idea that the
distribution of failures in solids must necessarilybe a normal one,
and this becausethe final fracture of a specimenis the total effect
of a large numberof independentcauses. I do not find this to



be avery convincingargument. Who knows, apriori, if the decisive
0 0 causes.are independentor even if they are plural?

The argumentsare sometimesof a more sentimentalcharacter,
0 frankly stating that the normal distribution function is *nature’s

own distribution*. This standpointseems,in any cases,to have
beenabandonedby the statisticians. Yearsago,the famousscientist
Pearsonasked: *Is it not possibleto find material which obeysthe

0 . . normal law?* He answeredhimself: *Yes, but this law is not a
universal law of nature. We musthunt for cases.* But, nevertheless,

in the discussionson the strengthof material,the obsoleteideathat
the normal distribution is the Only correctone, turns up from time
to time, e.g. FRENKEL and KONTOROWA (8) et. al.

As it is the opinion of the presentAuthor that it is not of any
useevento hunt for normaldistributionsof failuresin solids,because
theydo not exist at all, it might be necessaryto discussthe question
at somelength.

The normal distribution function is definedby the relation

1
~I~(S)=~7= J e ~ (29)

a V 2n
—

It is easyto seethat this expressiondoesnot satisfythe condition
(21) as ~ (0) 0, which meansthat thereis still a finite probability
~ffractureatthe load0. I think that, if you believein this statement,

it is to exaggerateyour pessimism.
Then you will be told that the probability 0 (0) is certainly not

zero but its value is insignificantly small. The objection to this
view is that this difference, evenif small, is of fundamentalconse-
quencesas to the factor of safety.

If U> 0 — and without doubt such materials do exist — it
i~possible to define the factor of safety in an objective way. If,
on the contrary, U = 0 or U = — ~ as in (29), the only way out
of this dilemma is to select subjectively a certain probability of
fracture,which has to be tolerated. In the previously cited book
by the Staff of the Battelle Memorial Institute (5) you will find this:
sEngineeringdesign of roller bearingsis basedon the stresswhich
would permit the enduranceof a given numberof cycles with only

10 percentfailed bearings, as shown in laboratory testsaf actual
bearings..

This is the situationillustrated by Fig. 4, if the line P = 0 had



beenomitted in field 1, which makesa considerablereductionof the
information availablethrough the completediagram.

Now, the expression(29) may, of course,easily be modified in
order to obtain a U-value, for instance, by substitutingfor S the
function log (S — U) or introducing a term — (S— U)m or the
like. But thereis an unlimited numberof substitutionspossibleand 0

which of them is sthenature’s own>>?
As a final objection against the normal distribution it might be

mentionedthat if the distributionwereexactlynormal for a specimen

of a certainlength, then the distributioncannotbe normal for any
other length. This statementwill be proved in the next chapter.
At the sametime it will be seenthat the normal distributionis very
badly suited for the manipulationsthat arise in connectionwith
a changeof the dimensionsof the specimen.

5. Size 1~ffect 0

The original sourceof the statistical theory of strength is to be
found in the Author’s effort to explain the fact, known for a long
time, that the ultimatestrengthof a specimenincreaseswith reduced
dimensionsandthat it is greaterin bendingthanin tension. As far
as he knows it was previously unknown that thesetwo phenoniena
were intimately connectedand could be explainedby the same
principle basedon statisticalconsiderations.This idea will now be
briefly recapitulated.

Supposethat a specimenof the length L1 and its distributions
function F1 aregiven for an arbitrarylife N lying anywherebetween
1 and c#~.Supposefurther,that two such,nominallyequal,specimens
are coupled end to end, thus forming a specimenwith the length
2 L1 but with an unchanged cross-section. The probability that
failure will not occurin one of the two halves is obviously equalto
1 — F1 (2) and the probability that failure will not occur either in

t one or in the other half-part is equalto the product of the two
independentevents. If F2 (5) denotesthe distribution function of
a failure in the specimenwit1~the length 2 L1 it is easyto see that

1—F2(S) = [1_F1(2)]2 (30)

or .

F2(S) = 1—~1—F1(2)12 (31)

Ii
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Fig. 18. P — S curves for two different lengths.

For aspecimenwith the arbitrary length L its distribution func-
tion FL is determinedby

L

FL(S)= 1—El—F1 (S)]’~’ (32)

This is evidently an application of the weakestlink principle and
it may be found in a previouswork by the Author (1).

If F1 is given, graphically or numerically, it is extremely easy
to constructF2 as shown in Fig. 18. 0

It should be well observedthat the two functions in (32) vanish
for the samevalueof 5, independentlyof the form of the distribution
function, i. e. the changeof the length does not changethe value
of U.

Furthermore,the valueof the medianas well as that of the arith-
inethic meanwill be decreasedwhen the length is increased. The
experimentallydeterminedultimate strengthis obtainedby taking

£s~.
the arithmetic mean2

m = — of the n values,andwill accordingly
have a lower value if the length is increased. The only exception
to thisrule occursif thereis no dispersionof 5, i. e. if the distribution
function is astep function with a stepof the height 1 in the point

= >9m~ This is exactly a tacit assumptionof the classicaltheory
of strength.

The deductionof (32) postulatesno knowledgeof the properties
of the material or its homogeneitywithin the cross section; only
that the material is statistically homogeneousas to the length
direction. For this reason(32) maybe consideredashavingamathe-
inatical rather thana physical character.
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TABLE 3. Rotating-beamendurance te8tS at two different elfective lengths0/the
specimens WEIBu1~(9).

~,

Number of millions of cycles N
at an effective length of v

Number of millions of cycles
at an effective length of

N

50 mm. 25 mm. 50 mm. 25 mm.

1 .59 .61 14 2.62 . > 10.00
2 .68 .80 15 2.76 > 10.00

3 1.07 1.35 16 3.62 > 10.00
4 1.13 1.41 17 8.63 10.00

5 1.14 1.66 18 9.38 10.00

6 1.72 2.07 19 9.99 > 10.ou
7 1.76 2.65 20 > 10.00 > 1O.oo
8 1.98 2.88 21 > 10.00 > 10.oo
9 1.00 4.32 22 > 10.00 > 10.00

10 2.11 4.38 23 > 10.00 > 10.00

11 2.21 > 10.00 24 I > 10.00
> 10.00

12 2.32 > 10.00 25 > 10.00 >

13 2.57 > 10.00 26 > 10.00 > 10.oo

We shall apply the result to an investigation performed at AB
Svenska Kullagerfabriken, Gothenburg, and published by the
AUTHOR (9) some time ago. In a rotating-beamendurancetest, 52
specimenswere tested, half of theni with an effectivelengthof 25 mm
and the other half with a length of 50 mm. The test pieceswere

made from a first-class ball bearing steel; the heat treatmentand
machining were very carefully done. Thus, the specimensmay be
regarded as unusually homogeneousones. The reversed bending
stress was ±31.0 kg/mm2 for all specimens. Observed lives N are

given in Table 3, from which the influence of the length of the

specimenis easily seen.

When the results are plotted as probability against number of
load cycles — correspondingto field 3 of Fig. 4 — the curves look
like those in Fig. 19. If therehad beenno influenceof the length,
as postulated by the classical theory, the observationswould have
fallen on approximatelythe samecurve insteadof on two separate
ones.

The mostperspicuousway to verify (30) seemsto be the following:
We have by (1), (4), and (30)
3
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Fig. 19. Rotating-beam test on steel specimensof two different lengths.

I v1 (33)

=
2

r
1

— (34)

As (30) is deducedon the assumption0Of the samelife N for the
two cases,(34) gives the correspondingvaluesof v for the samearbit-

1,2

rary N. Accordingly, if ~2 and 2z’~— —-~--jareplotted again~tN,
all the points will fall approximately, on the samecurve. Fig. 20
verifies this in a satisfactoryway, consideringthe small numberof

specimens.
By (32) we are now in a position to prove that there exists at

the most one single length of the specimenthat may havea normal
distribution. If this be L1, the distribution function for a length L
is by (29) and (32)

+ ~ (S_Sm)’

— ~‘ .cLSj” (35)
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Fig. 20. Rotating-beamtest on steel specimensof two different lengths.

Thisis nota normaldistribution and,besides,not a very convenient
expressionfor numericalcomputations. If onewants, nevertheless,
to maintain the fiction thatthe distributionis approximatelynormal,
it is necessaryto computenew values of the parametersfor each
length of the specimen.

As a contrast,we now take adistribution accordingto (25) Then

FL (8) = 1 — (36)
andthereis no changein the values of the parameters.

This rule holds good evenin the generalexpression(19), which
gives

FL(S) = 1_eL~”~1 (37)

1
loglogj—~=log>p+logL~logL1 ....... (38)

1.
If we then take log log 1 — as ordinate and S as abscissa,

the change of the length L means a displacementof the curve
without any changeof the form, as shown in Fig. 21.
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Fig. 21. P— S curves for different lengths of the specimen.

In the casejust discussed,wherethe length only, andnot the cross-
sectionalarea,was supposedto be changed,it is quite correctto put
in the volume V instead of the length L in (36) thus obtaining

k(S— U)
tm

F~(8) = 1 — e V
1

(39)

The question now arises, if (39) has the same general validity
as (32).

In order to elucidate this problem, we supposethat we couple
the two specimensside by side, thus havinga specimenwith the
original length L1 but an areatwice as great. Evenin this case(39)
is valid, because,if failure occursin one of the specimens,the load
011 the otherone will be doubled. The probability that it will endure
more than a few cycles is extremelysmall.

If the two bars are allowed to melt together, so to speak,i. e. if
we havea single specimenwith adoubled cross-section,the validity
of (39) is not at all self-evident. It dependson the mannerin which
the fracture is spreadover the area, but it dependsalso on the
homogeneityof the material. Sometimesthe surface layers of the
specimenmay have other propertiesthan the inner part, e. g. cast
iron, ceramic material, etc. and then (39) certainly will be invalid.
The same effect may be produced by machining, corrosion and
similarprocesses,deterioratingthe surfacelayers. It may alsohappen
that the material is homogeneous.

In any case,it is no trivial mathematicalaffair to determinethe
influenceof changing the diameterof the specimen.

S



The relation (39) is based on the assumptionthat the stressis

uniformly distributed over the entire volume. This condition is
not satisfied, for instance, at bending and torsional loads. As has
alreadybeendemonstratedin anotherplace(1, 2), the actualvolume
of the specimenthen has to be reduced.

This is a rule which hassomebearingon fatiguetestsat comlfined
loads. By a very ingenious method, GOUGH (10) has investigated 0

the influence of combined stresseson fatigue. His testing machines
had the capacity of changing the mode of loading in a continuous
way, from bending to torsion. .

Now, the effectively testedvolumeis much greaterin torsion than
in reversedbending. For this reasonit is not quite correct to use
the medians(or still worse the means)when evaluatingthe results
without introducing correctionsfor the volume.

As a better method,I should proposethe use of the U-values,
which are,aspreviouslymentioned,independentof thetestedvolume.

6. Computationof the Parameters

If one has obtained the lives N~,where 1 � v n, at a number
of loads 5,>, where 1 � /L � i the first procedureis to arrangethe
valuesaccording to increasingmagnitudesof N and tabulate them
as shownin Table 1.

Every column (v = const.) may be considered as containing
specimenswith approximately the same value of 117. The relation
(15) is, accordingly,valid for eachcolumn,and the parametersk, rn,

and E may be computed. TI
For this reason,we startby plotting theS~andN~of eachcolumn

on logaritmic scales. If the points fall approximatelyon a straight
line, this meansthat the endurancelimit E = 0.

In most of the cases,the points fall on acurve, which is concave
upwards. Then, by way of trial, different values of E are tried.
If a chosenvalue is greaterthan the actual one, the curve will be
concavedownwardsas shown in Fig. 10. In this way the correct
value will be found. After some experience,one or two trials will
be sufficient.

It is difficult to judge, in this way, which value is the better, if V

the scatteris great, andthe result will be, to someextent,subjective :1
but, as a rule, quite sufficiently exactto decidewhetherthe material
is statistically homogeneousor not.

—I
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As previously mentioned,the observationssometimeshaveto be

divided into two or more homogeneousparts, inside of which the

parametersare constantsand may be computed0by a numerical
method, giving objective and more correct values. This method,
which originally was proposedandused by HANS WEIBULL (11), is

0 basedon the idea of determining the correlation betweenthe 8,>

and the N,1 values of each column (3’ = constant). Obviously~if
therehadbeenno scatterand(15) is valid, the points (x, y) of (17)

should fall exactly on a straight line and the correlation should be
complete, i. e. the correlation coefficient r = 1. Every deviation
from the straight line results in a decreaseof r. Then, it follows
that every deviation of 117 from the correctvalue as a rule will be
followed by a decreaseof r.

The method now consistsof chosing appropriatevalues of E,

calculatingcorresponding‘values of
~2x-iy

r= ______________________ (39)
i/F (Zx)21F (2:y)2
F

~ IL.

and selectingthat value of E, which gives the greatestr.
From (17) it follows that only x, but not y, is influenced by a

changeof E.
When E has been determinedin this manner, the a and m may

be computedby the method of least squaresthrough the formulae

£y~Ex2—ZxyZx ___________
log k = ~ I — (I x)2 , m = I — (I x)2 (40)

Thesecomputationsof E, k, andm arerathertedious,astheyhave
to be carriedthroughfor every column of the table. For this reason,

it is better to use a punched-cardmethod, which is drawn up by
BENGT W. WEIBULL, who has giventhe descriptionand theschemes

in Appendix I.

Now, when the parametersare computed,it is easyto calculate
the relationsbetweenP andS for given valuesof N, i. e. a vertical

sectionthroughthe S — N curvesof field 1 in Fig. 4. It should be
0~ recommendedto take threeN values: one of them N = oo, corres-

ponding to the computedE, the secondof them at the smallestN



inside the homogeneouspart, and the third, an appropriatevalue
betweenthe two others.

For each of theseN, correspondingvaluesof S andP haveto be
calculated,.being altogethern pairs of values,which are connected
by (25). .

The parametersU, k, and m of theseP — S curves, as illustrated
by Fig. 4, field 2, will be computedin exactly the samemanneras
demonstratedconcerningthe S — N curves. First, the homogeneity
is graphicallyexamined, then, the U value making r a maximum
is determined. Here, of course,n has to be substitutedfor i, and x
and y are definedby (27) insteadof by (17).

After the parametershavebeencomputed,correctedS values are
easilyobtainedfor appropriateF, including P = 0, i. e. the computed
U values. The P values may be arbitrarily selected. There is no
necessity of taking the same values as the ones obtainedexperi-
mentally.

Finally, for each such P, correctedvaluesof the parameterswill
be calculatedusing (14), after which the curves of fields 1 and 2
in Fig. 4 may be computedand drawn.

7. Numerical examples

As the first example,we take the rotating-beamendurancetest
on aluminum by JOHNSON and OBERG (4). From Fig. 17, the F
probable value of E seemsto be E = 0, [n order to check this
assumption,the correlationcoefficient r hasbeencalculatedaccording
to (39) for somevalues of E in the neighbourhoodof E = 0. The
result is illustrated in Fig. 22, giving for alloy A a maximum of
—r = 0.99 960 atE= —0.4 and for alloy C of —r = 0.99 965 at

E=+2.6. V

It should be well observedthat the valuesof log N are in both
cases taken from Fig. 9 by measurementafter some photographic
magnification. This proceduremay certainly introduce some ad- . 41
ditional errors, and for this reasonthe deviation of E from zero
cannot be consideredas significant. 0

By (40) the valuesof log k andm arecomputedgiving for alloy A

logk= 17.8346andm=—7.973



from which it follows that

N = 6.833 - 10’~- 5—7.973

whereS is given in thousandsof psi.
As the secondexample, we take the reversed-torsionendurance

test on copper,by RAVILLY (6). The two hundred observedvalues
of N are given in Table 1.

The first step now consists of computing the E-valuesfo~reach
one of the 20 columns of the table by chosing different E values
between 5.5 and 6.8, and calculating correspondingvalues of the
correlationcoefficient r. The easiestway to do this is by meansof

punched-cardmnachines, as described in the Appendix. As an
example,the calculatedvaluesfor v = 14 areshownin Fig. 23, from
which it may be seenthat E = 6.4 gives the maximumof correlation,
indicating the closestfit to a straight line of the x and ~i values.

I: In this way E has beendeterminedfor each v. The valuesthus
obtainedare denotedE1 in Table 4 and plotted in Fig. 24.

The next stepis to determinethe distribution function of E. It
is obvious,that the scatterof the points plotted in Fig. 24 makes

it. impossibleto decideif the expression(25) is the correctone or not.

• ___

58 6~0 6.2 ~ 6.4 6.6 6.8

Fig. 23. Correlationcoefficient vs. endurance limit for copper alloys.
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Fig. 22. Correlation coefficient vs. endurance limit for two aluminum alloys.



Fig. 24. E— v curve for copper wire.

However, the distribution function

P = = 1 — e 0.00283(5 42)6.71 (41)
n+1

illustrated by the solid line in Fig. 24, reproducesin a reasonable
way the valuesE1, as may be seenfrom Fig. 24 andTable 4, where

E2 denotesthe values calculatedby (41).

TABLE 4. Cakulatedendurancelirnile.

-.E
1

1 5.65 5.55
2 5.6 5.70

4 5.8 5.88
6 5.9 6.00

8 6.1 6.10
10 6.2 6.19
11 6.2 0 6.23
12 6.4 6.27

14 6.4 6.35
16 6.o 6.44
18 6.6 6.54
20 6.6 0.70
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Fig. 25. The parametersm and log k vs. v for copper wire.

If we now calculatelog k andm of (15) using1112 andthe observed
valuesof x and y, thenthe relationbetweenlog k, m, and v maybe
put in the simple form

m = — 1.63± 0.021 p = —1.63 + 0.441 ~

(42)
logk=2.99—0.oo8v=2.o9—o.1OSP J

These formulae may be usedfor N> 10~only.
As the most interesting specialcase we put P = 0 giving

E= 4.2,m= —1.63k = 977

Accordingly, the relation

N = 977 (8— 4.2) 1.63 (43)

gives the lower boundaryof the S — N~field.
it is obviousthat (41) and (42) representonly oneof the possible

V ways of describingthe observations. Whether or not this method
may be adaptedto other materialsmust be left to future investiga-

tions.
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