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4. P—S Curves

[f we examine the general properties of the distribution function
F (8) at a constant N, illustrated by the diagrams in Fig. 4, field 2,
we shall immediately find that this function is a positive, non-
decreasing-function where ————

FU)=0 for U220 and F () = 1.

Without loss of generality F (8) may be written in the form
F@®)=1—e®® ... ......... (19)

as for every given distribution function ¥, the corresponding function
can be uniquely determined by :

=—log(1—F) ..ovevrennnnn.. (20)

Evidently ¢ (S) is a positive, non-decreasing function of 3, satisfying
the conditions

ep(8)=0for SSUZ20 ............ (21)
and

p8)—>owfor§—00 .........0..... (22)

The condition (21) is a very important one, as it states that for
values less than U the probability of failure is not only very small
but exactly equal to zero. There is no doubt that this statement
corresponds to a real physical property of all existing engineering
materials.

The ativantage of writing the expression of the distribution function
in the form (19) is to be found in the fact that

I—F@®)=e""® .. ......... (23)

as will be shown m the next chapter.




Experience has shown that the expression

PWE) =k —U .., (24)

which satisfies (21) and (22), in many cases gives an excellent
reproduction of the observations.

It contains three parameters, which have to be fitted to gi\;en
data. '

Introducing (24) in (19) and considering (1) we have

P=1—ekS=0" ... e (25)°

which by (14) gives

y = 10 IO a = 10 k’ r = 10 S -_ D e e .:

we have, in fact, a linear relation

which is formally the same expi‘ession as (18) though, of course,
with a quite different sense.

The conformity of (18) and (28) may be extended to the comput-
ation of their parameters.

In this case, too, it is advisable to start with a graphical examin-
ation of the observations, in order to check the statistical homogenity
of the material. After this check-up, the determination of U and
the two other parameters is carried through in the same way as has
already been demonstrated.

It should be observed that the values 2 and y in (28) are obtained
by an interpolation, as they are the intersections between the
smoothed § — N curves and a vertical line N = constant.

Many authors have been strongly in favour of the idea that the
distribution of failures in solids must necessarily be a normal one,
and this because the final fracture of a specimen is the total effect
of a large number of independent causes. I do not find this to

27
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be a very convincing argument. Who knows, a priori, if the decisive
causes. are independent or even if they are plural?

The arguments are sometimes of a more sentimental character,
frankly stating that the normal distribution function is »nature’s
own distributions. This standpoint seems, in any cases, to have
been abandoned by the statisticians. Years ago, the famous scientist
Pearson asked: »Is it not possible to find material which obeys the
normal law? He answered himself: »Yes, but this law is not a
universal law of nature. We must hunt for cases.» But, nevertheless,
in the discussions on the strength of material, the obsolete idea that
the normal distribution is the only correct one, turns up from time
to time, e. g. FRENKEL and KoNToROWA (8) et. al.

As it is the opinion of the present Author that it is not of any
use even to hunt for normal distributions of failures in solids, because
they do not exist at all, it might be necessary to discuss the question
at some length.

The normal distribution function is defined by the relation

1 + % (S—Sﬂ

— @ edS e 29
aV2n_.£ ¢ (29)

® (S) =

It is easy to see that this expression does not satisfy the condition
(21) as @ (0) == 0, which means that there is still a finite probability
of fracture at the load 0. I think that, if you believe in this statement,
it is to exaggerate your pessimism.

Then you will be told that the probability @ (0) is certainly not
zero but its value is insignificantly small. The objection to this
view is that this difference, even if small, is of fundamental conse-
quences as to the factor of safety.

If U>0 — and without doubt such materials do exist — it
is possible to define the factor of safety in an objective way. If,
on the contrary, U = 0 or U = — o0 as in (29), the only way out
of this dilemma is to select subjectively a certain probability of
fracture, which has to be tolerated. In the previously cited book
Ly the Staff of the Battelle Memorial Institute (5) you will find this:
»Engineering design of roller bearings is based on the stress which
would permit the endurance of a given number of cycles with only
10 percent failed bearings, as shown in laboratory tests af actual
Learings.»

This is the situation illustrated by Fig. 4, if the line P = 0 had
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been omitted in field 1, which makes a considerable reduction of the
information available through the complete diagram.

Now, the expression (29) may, of course, easily be modified in’

order to obtain a U-value, for instance, by substituting for § the
function log (8 — U) or introducing a term — (S — U)™™ or the
like. But there is an unlimited number of substitutions possible and
which of them is »the nature’s own»?

As a final objection against the normal distribution it might be
mentioned that if the distribution were exactly normal for a specimen
of a certain length, then the distribution cannot be normal for any
other length. This statement will be proved in the next chapter.
At the same time it will be seen that the normal distribution is very
badly suited for the manipulations that arise in connection with
a change of the dimensions of the specimen.

5. Size Effect.

The original source of the statistical theory of strength is to be
found in the Author’s effort to explain the fact, known for a long
time, that the ultimate strength of a specimen increases with reduced
dimensions and that it is greater in bending than in tension. As far
as he knows it was previously unknown that these two phenomena
were intimately connected and could be explained by the same
principle based on statistical considerations. This idea will now be
briefly recapitulated. .

Suppose that a specimen of the length L, and its distributions
function F, are given for an arbitrary life N lying anywhere between
1 and o. Suppose further, that two such, nominally equal, specimens
are coupled end to end, thus forming a specimen with the length
2 L, but with an unchanged cross-section. The probability that
failure will not occur in one of the two halves is obviously equal to
1 —F, (8) and the probability that failure will not occur either in
one or in the other half-part is equal to the product of the two
independent events. If F,(S) denotes the distribution function of
a failure in the specimen with the length 2 L, it is easy to see that

1 —Fy(S) =[1—Fy ()P evenrnnnn... (30)
or ]
Fo(S)=1—[1—F, (S)PF..vonenenn... (31)
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Fig. 18. P —§ curves for two different lengths.

For a specimen with the arbitrary length L its distribution func-
tion Fy, is determined by

L
Fro(®)=1—[1—F, )% ....c....... (32)

This is evidently an application of the weakest link principle and
it may be found in a previous work by the Author (1).

If °F, is given, graphically or numerically, it is extremely easy
to construct F, as shown in Fig. 18.

It should be well observed that the two functions in (32) vanish
for the same value of S, independently of the form of the distribution

function, i.e. the change of the length does not change the value
of U.

Furthermore, the value of the median as well as that of the arith-
methic mean will be decreased when the length is increased. The
experimentally determined ultimate strength is obtained by taking

2z
the arithmetic mean S, = Tv of the n values, and will accordingly

have a lower value if the length is increased. The only exception
to this rule occurs if there is no dispersion of §, i. e. if the distribution
function is a step function with a step of the height 1 in the point
S = 8,,. This is exactly a tacit assumption of the classical theory

-of strength.

The deduction of (32) postulates no knowledge of the properties
of the material or its homogeneity within the cross section; only
that the material is statistically homogeneous as to the length
direction. For this reason (32) may be considered as having a mathe-
matical rather than a physical character.
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TABLE 3. Rotating-beam endurance tests at two different effective lengths of the
specimens WEIBULL (9).

Number of millions of cycles N Number of millions of cycles N
v at an effective length of " at an effective length of
50 mm. 25 mm, 50 mm, 25 mm,
1 .50 .61 14 2.62 . s 10.00
2 .88 .80 15 2.76 > 10,00
3 1.07 1.3 16 3.82 > 10.00
4 1.13 L4 17 8.83 > 10,00 °
5 1.14 1.66 18 9,38 > 10.00
6 1.72 2.07 19 | 9.99 > 10,00
7 1.76 2.85 20 > 10.00 > 10.00
8 1.08 2.88 21 s 10.00 > 10.00
9 1.99 4,32 22 > 10.00 s> 10,00
10 2.11 4,33 23 > 10.00 > 10.00
11 2.21 > 10.00 24 > 10.00 > 10.00
12 2.32 > 10.00 25 s 10.00 > 10.00
13 2.57 > 10,00 26 | >10.00 > 10.00

We shall apply the result to an investigation performed at AB
Svenska Kullagerfabriken, Gothenburg, and published by the
AuTHOR (9) some time ago. In a rotating-beam endurance test, 52
specimens were tested, half of them with an effective length of 25 mm
~and the other half with a length of 50 mm. The test pieces were
made from a first-class ball bearing steel; the heat treatment and
machining were very carefully done. Thus, the specimens may be
regarded as unusually homogeneous ones. The reversed bending
stress was + 31.0 kg/mm? for all specimens. Observed lives IV are
given in Table 3, from which the influence of the length of the
specimen is easily seen.

When the results are plotted as probability against number of
load cycles — corresponding to field 3 of Fig. 4 — the curves look
like those in Fig. 19. If there had been no influence of the length,
as postulated by the classical theory, the observations wouid have
fallen on approximately the same curve instead of .on two separate
ones.

The most perspicuous way to verify (30) seems to be the following:
We have by (1), (4), and (30)
3

?
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Fig. 19. Rotating-beam test on steel specimens of two different lengths.
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=\l ag) e (33)
or
v
1'2=2r1-——n+'1‘ ................ (34)

As (30) is deduced on the assumption of the same life N for the

two cases, (34) gives the corresponding values of » for the same arbit-
2

rary N. Accordingly, if », and 2y, ﬂn_i{l

all the points will fall approximately, on the same curve. Fig. 20

verifies this in a satisfactory way, considering the small number of

specimens.

By (32) we are now in a position to prove that there exists at
the most one single length of the specimen that may have a normal
distribution. If this be L,, the distribution function for a length L
is by (29) and (32)

1 te (—Sw L
| ¢L=1-—[1-— f » -d_s]’f' ..... (35)

are plotted against N,
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Fig. 20. Rotating-beam test on steel specimens of two different lengths.

- This is not a normal distribution and, besides, not a very convenient
expression for numerical computations. If one wants, nevertheless,
to maintain the fiction that the distribution is approximately normal,
it is necessary to compute new values of the parameters for each
length of the specimen.

As a contrast, we now take a distribution according to (25) Then

Fo(8)=1—ce e (36)

and there is no change in the values of the parameters.
This rule holds good even in the general expression (19), which
gives

or

log log =logep +logL —logL, ....... (38)

1—P

1 .
I —P as ordinate and S as abscissa,
the change of the length L means a displacement of the curve
without any change of the form, as shown in Fig. 21.

If we then take log log
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Fig. 21. P — 8 curves for different lengths of the specimen.

In the case just discussed, where the length only, and not the cross-
sectional area, was supposed to be changed, it is quite correct to put
in the volume V instead of the length L in (36) thus obtaining

The question now arises, if (39) has the same general validity

“as (32).

In order to elucidate this problem, we suppose that we couple
the two specimens side by side, thus having a specimen with the
original length L, but an area twice as great. Even in this case (39)
is valid, because, if failure cccurs in one of the specimens, the load
on the other one will be doubled. The probability that it will endure
more than a few cycles is extremely small.

If the two bars are allowed to melt together, so to speak, i.e. if
we have a single specimen with a doubled cross-section, the validity
of (39) is not at all self-evident. It depends on the manner in which
the fracture is spread over the area, but it depends also on the
homogeneity of the material. Sometimes the surface layers of the
specimen may have other properties than the inner part, e. g. cast
iron, ceramic material, etc. and then (39) certainly will be invalid.
The same effect may be produced by machining, corrosion and
sinilar processes, deteriorating the surface layers. It may also happen
that the material is homogeneous.

In any case, it is no trivial mathematical affair to determine the
influence of changing the diameter of the specimen.
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The relation (39) is based on the assumption that the stress is
uniformly distributed over the entire volume. This condition is
not satisfied, for instance; at bending and torsional loads. As has
already been demonstrated in another place (1, 2), the actual volume
of the specimen then has to be reduced. ’

This is a rule which has some bearing on fatigue tests at combined
loads. By a very ingenious method, Gouen (10) has investigated
the influence of combined stresses on fatigue. His testing machines
had the capacity of changing the mode of loading in a continuous
way, from bending to torsion.

Now, the effectively tested volume is much greater in torsion than
in reversed bending. For this reason it is not quite correct to use
the medians (or still worse the means) when evaluating the results
without intreducing corrections for the volume.

As a better method, I should propose the use of the U-values,
which are, as previously mentioned, independent of the tested volume.

6. Computation of the Parameters

If one has obtained the lives IV,, where 1 <»<mn, at a number
of loads §,, where 1< u<i the first procedure is to arrange the
values according to increasing magnitudes of NV and tabulate them
as shown in Table 1.

Every column (v = const.) may be considered as containing
specimens with approximately the same value of E. The relation
(15) is, accordingly, valid for each column, and the parameters &, m,
and K may be computed.

For this reason, we start by plotting the S, and N, of each column
on logaritmic scales. If the points fall approximately on a straight
line, this means that the endurance limit £ = 0.

In most of the cases, the points fall on a curve, which is concave
upwards. Then, by way of trial, different values of E are tried.
If a chosen value is greater than the actual one, the curve will be
concave downwards as shown in Fig. 10. In this way the correct
value will be found. After some experience, one or two trials will
be sufficient.

It is difficult to judge, in this way, which value is the better, if
the scatter is great, and the result will be, to some extent, subjective
but, as a rule, quite sufficiently exact to decide whether the material
is statistically homogeneous or not,




As previously mentioned, the observations sometimes have to be
divided into two or more homogeneous parts, inside of which the
parameters are constants and may be computed by a numerical
method, giving objective and more correct values. This method,
which originally was proposed and used by Hans WEiBuLL (11), is
based on the idea of determining the correlation between the S,
and the N, values of each column (» = constant). Obviously, if
there had been no scatter and (15) is valid, the points (z, y) .of (17)
should fall exactly on a straight line and the correlation should be
complete, i.e. the correlation coefficient »r = 1. Every deviation
from the straight line results in a decrease of . Then, it follows
that every deviation of E from the correct value as a rule will be
followed by a decrease of r.

The method now consists of chosing appropriate values of E,
calculating corresponding values of

2x-3y
Try——

r = S S —— N (39)

VlE x? — Eﬁ] [Z 7t — g—yf]
) ')

and selecting that value of X, which gives the greatest r.

From (17) it follows that only x, but not y, is influenced by a
change of E.

When E has been determined in this manner, the ¢ and m may
be computed by the method of least squares through the formulae

Jy-2at—Zzylzx tZaxy—32y-Zuz
i —(Zxp O T i —(Cap

logk = (40)

These computations of E, k, and m are rather tedious, as they have
to be carried through for every column of the table. For this reason,
it is better to use a punched-card method, which is drawn up by
BeExet W. WEIBULL, who has given the description and the schemes

“in Appendix I.

Now, when the parameters are computed, it is easy to calculate
the relations between P and S for given values of N, i. e. a vertical
section through the § — N curves of field 1 in Fig. 4. It should be

-recommended to take three N values: one of them N = oo, corres-

ponding to the computed E, the second of them at the smallest N
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inside the homogeneous part, and the third, an appropriate value
between the two others.

For each of these N, corresponding values of § and P have to be
calculated, being altogether n pairs of values, which are connected
by (25).

The parameters U, k, and m of these P — 8§ curves, as illustrated
by Fig. 4, field 2, will be computed in exactly the same manner as
demonstrated concerning the § — N curves. First, the homogeneity
is graphically examined, then, the U value making r a maximum
is determined. Here, of course, » has to be substituted for 7, and =z
and y are defined by (27) instead of by (17).

After the parameters have been computed, corrected § values are
eagily obtained for appropriate P, including P == 0, i. e. the computed
U values. The P values may be arbitrarily selected. There is no
necessity of taking the same values as the ones obtained experi-
mentally.

Finally, for each such P, corrected values of the parameters will
be calculated using (14), after which the curves of fields 1 and 2
in Fig. 4 may be computed and drawn.

7. Numerical Examples

As the first example, we take the rotating-beam endurance test
on aluminum by Jon~NsoN and OBERe (4). Frem Fig. 17, the
probable value of £ seems to be K = 0. In order to check this
assumption, the correlation coefficient r has been calculated according
to (39) for some values of £ in the neighbourhood of # = 0. The

. result is illustrated in Fig. 22, giving for alloy 4 a maximum of

—7r = 0.99 960 at ¥ = — 0.4 and for alloy C of —r = 0.99 965 at
E = 4+ 2.6,

It should be well observed that the values of log N are in both
cases taken from Fig. 9 by measurement after some photographic
magnification. This procedure may certainly introduce some ad-
ditional errors, and for this reason the deviation of E from zero
cannot be considered as significant.

By (40) the values of log k£ and m are computed giving for alloy 4

log k = 17. 8346 and m = — 7.973

i

N --th
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Fig. 22. Correlation coefficient vs. endurance limit for two aluminum alloys.

from which it follows that
N = 6.833 - 1017 - §— 7073

where 8 is given in thousands of psi.

As the second example, we take the reversed-torsion endurance
test on copper, by RaviLLy (6). The two hundred observed values
of N are given in Table 1.

The first step now consists of computing the E-values for each
one of the 20 columns of the table by chosing different E values

"between 5.5 and 6.8, and calculating corresponding values of the

correlation coefficient ». The easiest way to do this is by means of
punched-card machines, as described in the Appendix. As an
example, the calculated values for » = 14 are shown in Fig. 23, from
which it may be seen that £ = 6.4 gives the maximum of correlation,
indicating the closest fit to a straight line of the = and y values.

In this way £ has been determined for each v. The values thus
obtained are denoted , in Table 4 and plotted in Fig. 24.

The next step is to determine the distribution function of E. It
is obvious. that the scatter of the points plotted in Fig. 24 makes
it impossible to decide if the expression (25) is the correct one or not.

1.000

993+ = 1N

-r e \
V=14

.997

.996

58 60 62 E 64 66 68

Fig. 23. Correlation coefficient va. endurance limit for copper alloys.
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Fig. 24. E —» curve for copper wire.

However, the distribution function

v 8.71
= ] @ 000283 (BT (4])

illustrated by the solid line in Fig. 24, reproduces in a reasonable
way the values E,, as may be seen from Fig. 24 and Table 4, where
E, denotes the values calculated by (41).

TABLE 4. Coalculated endurance limits.

E, E,
1 - 5.85 5.55
2 6.6 5.70
4 5.8 ' 5.88
[i] 5.9 6.00
8 6.1 6.10
10 6.2 6.10
11 6.2 ‘ 6.23
12 6.4 6.27
14 6.4 6.33
16 6.8 6.44
18 6.6 6.54
20 6.0 6.70
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Fig. 25. The parameters m and log % vs. v for copper wire.

If we now calculate log k& and m of (15) using E, and the observed

values of z and y, then the relation between log k, m, and v may be
put in the simple form

m=—1.63+ 0.021 y — — 1.63 + 0.441 P
S P, 42
logk == 2.99 —0.008 v = 2,99 — 0.168 P “2) -
These formulae may be used for N > 105 only.
As the most interesting special case we put P = 0 giving
E=42m= 163k =977
Accordingly, the relation
N=91T(S—4.2)78 ......... (43)

gives the lower boundary of the S — N field.

It is obvious that (41) and (42) represent only one of the possible
ways of describing the observations. Whether or not this method
may be adapted to other materials must be left to future investiga- '
tions.




