

Reliability Is A Business Issue

- System failures halt cash inflows plus incur repair costs
- Equipment failures cost money for repairs/claims
- Business needs equipment and processes that are

 - − Reliable ← free from system failures and high cost
 - Affordable ← a life cycle cost issue of tradeoffs
- We speak of technology, safety, and reliability but the main issue is money which addresses life cycle costs!
- Reliability issues involve details about time and money for the entire organization to make business decisions

© Barringer & Associates, Inc. 2004

3

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

• Management says they want reliability then they describe **availability**—with emphasis on fast repairs

 Availability describes the % of time the system is alive and ready for use when called upon

- Management verbalizes they want reliability—with emphasis on uptime (availability)
 - Reliability addresses the probability of the failure free interval under specific conditions
- Management seldom accurately defines costs of unreliability to focus the staff on \$Risk tradeoffs for reliability issues

Management Do You Know The Cost Of Unreliability?

- Are you managing to **control the cost of unreliability** including failure of the process?
- Have you defined a **strategy for the system** or do you simply have a collection of tactics that you think represent a strategy?
- Have you **communicated your cost of unreliability** with a plan for attacking high costs money issues—do your engineers know the cost details to implement the tactics?

Reliability vs Maintenance Engineering

- Renaming your maintenance organization to include the name reliability gives you style—but what about substance of actually using reliability tools?
- Reliability engineering tools work to avoid failures
- Maintenance engineering tools strive for fast repairs
- It's simple—

Reliability engineers : Fire marshal :: Maintenance engineers : Fire fighters

• You'll need ~1 Reliability Engineer for every ~10 Maintenance Engineers (no increase in staff size)

© Barringer & Associates, Inc. 2004

Reliability Tools: Are You Using?

- Mean time between failures Use arithmetic for figures of merit
- Decision trees Use reliability values to get quick decisions
- Bathtub curves Understand modes of failure from human experiences
- Availability/reliability % of time available and % chance for no failures
- Preparing reliability data for analysis Make data talk
- Normal probability plots Bell shaped curve made into a straight line
- Log-normal probability plots Tailed data made into a straight line
- Weibull probability plots Organize chaos of data into a straight line
- Corrective action for Weibull failure modes What to do and when
- Reliability block diagram models Organize failures into RAM facts
- Monte Carlo simulations Use for complex models to get facts on failures

Reliability Tools: -- cont'd

- Critical items list Reduce complexity to the vital few issues for management
- Pareto distributions Separate the vital few issues from the trivial many
- Failure mode effect analysis Bottom up search for problems to eliminate
- Fault tree analysis Top down search for problems driven by experience
- Quality function deployment Put the voice of the user into reliability
- Design reviews Perform engineering review for reliability issues
- Configuration control Document to avoid reliability problems
- Mechanical components interaction tests Find problems early
- Load/strength interactions Failures: strengths too low or loads too high

© Barringer & Associates, Inc. 2004

- Electronic device screening and derating Eliminate failures
- Software reliability tools Test/use/correct, test/use/correct, test/use/correct
- Reliability testing strategies Find the limits to find weaknesses & correct
- Simultaneous testing Testing/use strategy for inexpensive items
- Sudden death testing Testing/use strategy for expensive items
- Accelerated testing How to get test results in your life time!—add loads
- Reliability growth models Show failures & forecast future failures
- Failure recording, analysis, & corrective action systems Data!
- Reliability policies and systems Say what you want & get what you say
- Contracting for reliability Specify and communicate with your vendors
- Reliability audits Find out how you're really doing by examination

Reliability Tools — Start Your Numbers With Arithmetic

- Start with MTTF or MTBF = $(\Sigma \text{ life})/(\Sigma \text{ fail.})$
- What are you mean times between failure for: Pumps? Heat exchangers? Valves? etc. — or are you clueless? If you're clueless on the numbers, <u>you just</u> <u>don't get the idea</u> about reliability issues!
- Understand MTTF or MTBF which begins with arithmetic and grows to statistics
- A key long term issue: mean time between maintenance actions—this is a durability issue!

© Barringer & Associates, Inc. 2004

13

Top Down Cost Of											
Unreliabilty Model											
For each block and the plant summary: What is the cost of <u>un</u> reliability if gross margin is \$10,000/hr, scrap is \$5,000/incident, and maintenance cost is \$5,000 per hour of down time?											
	Reliability Problem	Block Diag	ram Of Plant	Maintainability Problem							
	A	► B	► C	Summary	· _						
Failure Rate	22.8E-06	114.2E-06	57.1E-06	194.1E-06	fail./hr						
Corrective Time/Fail.	18	24	83*	40.6	hrs/fail						
Lost Time	3.6	24	41.5	69.1	hrs/yr						
Gross Margin Lost	\$36,000	\$240,000	\$415,000	\$691,000	(1) \$/yr						
Scrap Disposal \$'s	\$1,000	\$5,000	\$2,500	\$8,500	\$/yr						
Breakdown Maint. \$'s	\$18,000	\$120,000	\$207,500	\$345,500	2 \$/yr						
Total	\$55,000	\$365,000	\$625,000	\$1,045,000	\$/yr						
		2 © Barringer & Assoc	iates, Inc. 2004	Cost of Unreliab	oility 29						

Don't Forget Simple Tools: FMEA												
Occurrence Ranking Index: Rank Criteria 1 Remote chance for failure 2 Low failure rate based on 3 previous designs with low failures 4 Moderate failure rates based on similar 5 designs which have some occasional 6 failures but not in major proportions 7 High failure rates based on similar 8 designs which have been troublesome. 9 Very high failure rates and the failures 10 will be major occurrences. Component: Supplier:			ar nal is ome. s	Severity Ranking Index Rank Criteria 1 Undetectable effect on system 2 Low severity impact because failure 3 will cause slight customer annoyance 4 Moderate severity with some customer 5 dissatisfaction and with performance 6 loss which is noticable by customer 7 High severity with high degree of 8 customer dissatisfaction 9 Very severe problem involving potential 10 safety problem or major non-conformity FMEA Date/Rev Level: Customer:				Customer's Detection Ranking Index Rank Criteria 1 Almost certain detection of failure mode 2 Very high likelihood of detecting failure 3 High likelihood of detecting failure mode 4 Mod. high likelihood of detecting failure 5 Mod. likelihood of detecting failure 6 Low likelihood of detecting failure 7 Very low likelihood of detecting failure 8 Remote likelihood of detecting failure 9 Very remote likelihood of detecting failure 10 Can not detect failure mode				
Component Name	Component Function	Cause(s) Of Failure	Effect(s Failur	s) Of re	Occurrence Index (O)	Severity Index (S)	Detection Index (D)	Risk Pr Numi (O)*(S)	iority per *(D)	Recom	nended Corrective Action	
					© Barringer & A	Associates, Inc	. 2004	SAE	<mark>E: J</mark> 1	739	30	

Engineers Must Quantify All Life Cycle Costs Engineers Must Think Like MBA's And Act Like Engineers To Get Lowest Long Term Cost Of Ownership Over The Entire Life Cycle

Life Cycle Costs Are Fixed During Design

- Often sustaining costs (including hidden costs) are 2-20 times acquisition costs (obvious costs)
- About 65% of total LCC are fixed by the time equipment is specified (but only a few percent of funds have been expended)
- Minimizing LCC pushes up NPV
- Finding the minimum LCC required details for both acquisition costs and sustaining costs

© Barringer & Associates, Inc. 2004

33

Summary

- Set a policy for a failure free environment
- Use data to predict problems and fix them
- Think time, money, and alternativeS
- Quantify unreliability and unreliability costs

© Barringer & Associates, Inc. 2004

37

- Plan for organized improvements
- Learn new tools for solving old problems
- Prevent system failures

