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Abstract

This paper presents a standard method of treating
measurement error for gas turbine engine performance
parameters. The lack of a standard method for esti-
mating the errors associated with gas turbine perform-
ance data has made it impossible to compare measure-
ment systems between facilities, and there has been
confusion over the interpretation of error analysis. The
mathematical uncertainty model presented is based on
two components of measurement error: the bias error
and the precision error. The uncertainty estimate is
the interval about the measurement that is expected to
encompass the true value. The propagation of error
from basic measurements through calculated perform-
ance parameters is presented. Traceability of meas-
urement back to the National Bureau of Standards is re-
viewed. Both precision and bias errors are determined
in part by their traceability to the standards of the
National Bureau of Standards. Performance parameter
errors are further propagated from the measurement
errors through functional relationships. Methods for
handling traceability and the propagation of error are
described in the paper.

Introduction

This paper is based on the authors' larger work,
Handbook--Uncertainty in Gas Turbine Measurements;
AEDC-TR-73-5 (AD-755356). The work reported in the
handbook was sponsored by the Arnold Engineering De~
velopment Center, Air Force Systems Command, United
States Air Force. The results presented were compiled
by ARO, Inc. (a subsidiary of Sverdrup & Parcel and
Associates, Inc.), contract operator of the Arnold Engi-
neering Development Center (AEDC), Air Force Sys-
tems Command (AFSC), Arnold Air Force Station,
Tennessee, under Contract F40600-73-C-0004. The
preparation of the text was accomplished by
Dr. R. B. Abernethy, Senior Project Engineer,

Billy D. Powell, David L. Colbert, and

Daniel G. Sanders, Pratt & Whitney Aircraft under sub-
contract to ARO, Inc. The contracted work consisted
of a revision to the material in the '"Interagency Chem-
ical Rocket Propulsion Group (ICRPG) Handbook for Es-
timating the Uncertainty in Measurements made with
Liquid Propellant Rocket Engine Systems, " CPIA Pub-
lication No. 180 (same authors as above), substituting
treatment of gas turbine measurement errors for rocket
engine treatment and writing additional material applic-
able to gas turbine measurement errors.

Measurement Frror

Measurements are always subject to errors.
These errors may be caused by slight differences in con-
struction of identical measurement instruments or they
may be caused by environment variations and the meth-
ods that we use in handling the instruments. Still other
errors are inherent in the design of the instruments
themselves. It is difficult to conceive of a measurement
that is free of error.

The basis for the uncertainty model lies in the
nature of measurement error. We view error as the
difference between what we see and what is truth
(Figure 1). All we ever see is the measurement,
yet if that measurement is to be useful, we must define
an associated interval that includes the truth. Most
measurement error models agree to this point. The
great diversity between them is in defining the size of
the interval for any given measurement.

A little reflection on measurement error will show
us that all errors have two components: a fixed error
and a random error.
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Figure 1. Measurement error,

Precision

Random error is seen in repeated measurements.
The measurements do not agree exactly; we do not ex-
pect them to. There are always numerous small effects
which cause disagreements. This random error be-
tween repeated measurements is called precision error.
We use the standard deviation as a measure of precision
error. A large standard deviation means a lot of scat-
tar in the measurements. A smaller standard deviation
indicates relatively less scatter. A statistic, s, is cal-
culated from data to estimate the precision error and is
called the precision index (Figure 2).
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where N is the number of measurements (Xj) that we
have made and X is the average of the measurements.

Bias

The second component, bias, is the constant or
systematic error (Figure 3). In repeated measurements,
each measurement has the same bias. To determine the
magnitude of bias in a given measurement situation, we
must define the true value of the quantity being measured.
This true value is usually unknown and unknowable. It



is unknown because we cannot use the delicate NBS
standard in making day-to-day measurements and
unknowable because we cannot make perfect comparisons
even when standards are available. Therefore, the bias
is not easily determined. There is no nice statistic to
estimate bias from data, We must, instead, rely on the
best information available. Usually we rely on the
engineering judgment of instrumentation and measure-
ment engineers to provide an upper limit or bound on the
bias. In this country we define the true value as the
value defined by the National Bureau of Standards.
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Figure 2. Precision error,
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Figure 3. Bias error.

We may categorize bias into five classes (Fig-
ure 4): large known biases, small known biases, large
unknown biases and small unknown biases that may have
unknown sign (+) or known sign. The large known biases
are eliminated by comparing the instrument to a stand-
ard instrument and obtaining a correction. This proc-
ess is called calibration. Small known biases may or
may not be corrected depending on the difficulty of the
correction and the magnitude of the bias. The unknown
biases. are not correctable. That is, we know that they
may exist but we do not know the sign or magnitude of
the bias. Small unknown biases stem from errors intro-
duced from the hierarchy of calibrations that relate the
NBS standard to the working instrument.

Every effort must be made to eliminate all large
unknown biases. The introduction of such errors con-
verts the controlled measurement process into an un-
controlled worthless effort. Large unknown biases us-
ually come from human errors in data processing, in-
correct handling and installation of instrumentation, and
unexpected environmental disturbances such as shock
and bad flow profiles. We must assume that in a well
controlled measurement process there are no large un-
known biases. To ensure that a controlled measurement

process exists, all measurements should be monitored
with statistical quality control charts. Drifts, trends,
and movements leading to out-of-control situations
should be identified and investigated. Histories of data
from calibrations are required for effective control. It
is assumed throughout this paper that these precautions
are observed and that the measurement process is in
control; if not, the methods contained herein are invalid.
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Figure 4, Five types of bias errors.

In summary, measurement systems are subject to
two types of errors, bias and precision error (Figure 5).
One sample standard deviation is used as the precision
index. The bias limit is estimated as an upper limit on
the maximum fixed error.
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Figure 5. Measurement error (bias,

precision, and accuracy).

Uncertainty

For simplicity and for comparisons, we need a
single number to express a reasonable limit for error,
some combination of bias and precision. It is impos-
sible to define a rigorous statistic because the bias is an
upper limit based on judgment which has unknown char-
acteristics. Any function of these two numbers must be
a hybrid combination of an unknown quantity (bias) and a
statistic (precision)., However, the need for a single
number to measure error is so great that we are forced
to adopt an arbitrary standard. The one most widely )
used is the bias limit plus a multiple of the precision
error index., This formulation is recognized and recom-
mended by the National Bureau of Standards and has been
widely used in industry.

Uncertainty (Figure 6) may be centered about the
measurement and is defined as:

U = (B + tg55)



where
B is the bias limit

S is the precision error index

tg5 is the 95th percentile point for the two-tailed
Student's "t" distribution. We have arbitrarily
selected t = 2 for sample sizes greater than 30.
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Figure 6, Measurement uncertainty,
symmetrical bias.

If there is a nonsymmetrical bias limit (Figure 7),
the uncertainty U is no longer symmetrical about the
measurement. The upper limit of the interval is defined
by the upper limit of the bias interval (B¥). The lower
limit is defined by the lower limit of the bias interval
(B7). The uncertainty interval U is U™ = B™ - tg5S to
Ut = BY + tg5S.
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Figure 7. Measurement uncertainty,
nonsymmetrical bias,

Reporting Format

The definition of the two components, bias and
precision error and the limit, U, suggests a format for
reporting the measurement error. The format will de-
scribe the components of error, which are necessary to
estimate further propagation of the errors and a single
value (U) which is an arbitrary upper limit of the size of
the combined errors. The additional information, de-
grees of freedom for the estimate of S, is required to
use the precision index. These four numbers provide

all the information necessary to describe the measure-
ment error. The reporting format is:

1) S, the estimate of the precision index cal-
culated from data.

(2)  df, the degrees of freedom associated with
the estimate of the precision index (s).

(3) B, the upper limit of the bias error of the
measurement process or B~ and B if the
bias limit is nonsymmetrical.

(4) U = =£(B + tg55), the uncertainty limit, be-
. yond which measurement errors would not
reasonably fall. The t value is the 95th
percentile of the two-tailed Student's "'t"
distribution.

Alternatively, if the bias limit is nonsym-
metrical, U is the interval between
U~ = B™ - tg5S and Ut = B + tg5S.

Uncertainty (U) should never be reported without
the model components; bias, precision index and de-
grees of freedom. These components are required for
further treatment of error such as the propagation from
an engine to a propulsion system. It should be noted
that uncertainty, U, can never be propagated. Although
uncertainty is not a statistical confidence interval, it is
an arbitrary substitute that is probably best interpreted
as the largest error we might expect. Under any rea-
sonable assumption for the distribution of bias, the cov-
erage of U is greater than 95% but this cannot be proved
as the distribution of bias is both unknown and unknow-
able.

Measurement Process

Uncertainty statements are based on a measure-
ment process that must be defined. The process that we
will discuss here is the measurement of thrust specific
fuel consumption (TSFC) for a particular engine model
at a given engine manufacturer's facility. The uncer-
tainty will contain precision errors because of variations
between installations and calibrations of many measure-
ment instruments for each parameter. This uncertainty
will be greater than the uncertainty for comparative
tests to measure TSFC on a single stand for a single
run. The single stand, single run model would assume
that most installation-to-installation and calibration-to-
calibration errors would be biases rather than precision
errors. Biases are ignored in comparative tests.

The definition of the measurement system is pre-
requisite to defining the mathematical model. We must
list all the elemental bias and precision error sources
that are being estimated and how they are related to the
engine performance parameter. We categorize errors
into three groups: calibration-hierarchy errors, data
acquisition, and data reduction errors.

Calibration-Hierarchy Errors

In recent years the demanding requirements of
military and commercial aircraft have led to the estab-
lishment of extensive hierarchies of standards labora-
tories within the military and the aerospace industry.
The National Bureau of Standards is at the apex of these
hierarchies, providing the ultimate reference for each
standards laboratory. It has become commonplace for
government contracting agencies to require contractors
to establish and prove traceability of their measure-
ments to the NBS. This requirement has created even
more extensive hierarchies of standards within the in-
dividual standards laboratories. At each level of these



hierarchies, formal calibration procedures are used.
These procedures not only define calibration methods
and intervals but also specify just what information must
be recorded during a calibration, i.e., meter model,
serial number, calibration date, etc., in addition to
actual measurement data.

A typical example of the traceability chain is the
calibration hierarchy for a force measuring instrument,
a load cell (Figure 8). The load cell is calibrated with
a portable weigh kit while installed in the thrust stand.
The weigh kit is calibrated with a force calibrator that
is periodically calibrated in the company laboratory
against a proving ring. At infrequent intervals, the
ring is recalibrated at the National Bureau of Standards.
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Force measurement cali-
bration hierarchy.

Figure 8.

The five levels in the hierarchy require four com-
parisons to calibrate the load cell. In each comparison,
a precision error and a bias may be involved (Table 1).

Table 1. Calibration Hierarchy Error Sources
Precision Degrees of
Comparison Bias Error Freedom

NBS - Interlab Standard b11 S11 dfy1
Interlab Standard - Trans- bay so1 dfpy
fer Standard
Transfer Standard - bgq $31 dfgq
Working Standard
Working Standard - Meas by S41 dfyq

Load Cell

The measurement process takes place over a long
period of time. During this period, many calibrations
occur at each level. We view the precision errors of
each comparison as precision errors affecting the meas-
urement process we have defined. The overall effect on
the measurement of force is a random (precision error)
one, Therefore, the resultant overall precision error
is the root sum square of the individual precision errors.
For each comparison, the resultant calibration value is
usually the average of several readings. The associ-
ated precision error would be a standard error of the
mean for that number of readings., The precision error
for the hierarchy is:

- 2 2 2 2
Sy = \/sll+s21+531+s41

for four steps in the calibration process.

The degrees of freedom for each estimate of pre-
cision error may be combined using the Welch-
Satterthwaite formula to provide an estimate of the de-
grees of freedom for the combined precision error.

2 2 2 2 3y2
(511 t8yp t8g * S41)
S4 S4 S4 S4

13 dip; digy diyy

df1:

The Welch-Satterthwaite technique provides the
best known estimate of the equivalent degrees of freedom.

The unknown bias error limit for the end instru-
ment is usually a function of many elemental bias limits,
perhaps ten or twenty. It is unreasonable to assume that
all of these biases are cumulative., There must be a
cancelling effect because some are positive and some
are negative. For this reason, we have adopted the ar-
bitrary rule that the bias limit B will be the root-sum-
square of the elemental bias limit estimates:

[z 32 2 . .2
By ‘\/bu +bgy +bgy *hyy

The uncertainty in the measurement instrument due
to calibration is calculated using the uncertainty formula:

U; = £(By + t95 Sl)

Data Acquisition Errors

Data are acquired by measuring the electrical out~-
put resulting from force applied to a strain gage type
force transducer. Figure 9 illustrates some of the
error sources associated with data acquisition. Other
error sources such as electrical simulation, thrust bed
mechanics and environmental effects are also present.
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Figure 9.

All the data acquisition error sources are listed
in Table 2, Symbols for the elemental bias and preci-
sion errors, and for the degrees of freedom are shown.

Table 2. Data Acquisition Error Sources

Precision Degrees of

Error Source Bias Index Freedom
Excitation Voltage bi2o 512 dfy o
Electrical Simulation boo S99 dfyo
Signal Conditioning b3o S39 dfgo
Recording Device bgo 549 dfso
Force Transducer bs2 S52 dfso
Thrust Bed Mechanics bgo $g2 dfgo
Environmental Effects b72 879 dfzo

Bg and Sg represent the root sum square of the bias and
precision error columns, respectively.



Data Reduction Errors

Computers operate on the raw data to produce out-
put in engineering units. The errors in this process stem
from the calibration curve fits (Figure 10), and the com-
puter resolution.

APPLIED FORCE

MEASURED FORCE

Figure 10, Calibration curve,

Symbols for the data reduction error sources are
listed in Table 3. These errors are often negligible in
each process.

Table 3. Data Reduction Error Sources
Precision Degrees of
Error Source Bias Error Freedom
Calibration Curve Fit b1g 513 df; 3
Computer Resolution bog Sa3 dfgg

By and Sg represent the root sum square of the bias and
precision error columns, respectively.

Measurement Uncertainty Model

The calibration-hierarchy errors, the data acqui-
sition errors, and the data reduction errors are com-
bined to obtain the precision index, bias limit, and un-
certainty for the measurement.
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By assuming completely hypothetical numbers for
the elemental error terms for the calibration hierarchy,
data acquisition, and data reduction processes, Table 4
tabulates values for all elemental bias and precision
error terms and includes sample sizes for the calibra-
tion processes.

The errors associated with the calibration hier-
archy, data acquisition, and data reduction stages in the
measurement process are calculated below and are iden-
tified by S1, Sg, and Sg, respectively, for precision
indices and By, By, and Bg, respectively, for bias
limits and Uy, Ug, and Ug, respectively, for uncertainty
intervals.

1. Calibration bias limit for the force transducer is

_ 2
By=+4/ 2bi
i
B, = = \/(0.2)2 +(0.2)2 + (0.4)2 + (0. 8)2
Bl =40.94 1b
2. Calibration precision index estimate for the force

transducer is

E
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Table 4. Force Measurement Elemental Error Values

Calibration Errors, 1b

Data Acquisition Errors, lb

Data Reduction Errors, lb

Sample
Bias Precision Size Bias Precision Bias Precision
by =%0.2  syq =+10.0 6 byg =+5.0 815 =%5.0 by3=+10.0 s13 = negligible
b21 = 0.2 891 = +10.0 11 bgo = 5.0 899 = +5.0 b23 = negligible sgg = negligible
bgy; = 0.4  sgy = +14.1 5 bgp = £5.0 839 = 5.0
bgq = 0.8 541 = 20.0 17 bgg =+5.0 849 =2%5.0
bsg = 0.4  sgg =420.0

bgg = #10.0 sg9 = +10.0

b72 =+5.0

879 = +5.0

(df = 31 for all elemental
precision errors)

i




To demonstrate use of the Welch-Satterthwaite
method for determining degrees of freedom (df),
small sample sizes for the calibration processes
in the force transducer calibration hierarchy have
been assumed. Sample sizes are included along
with the elemental errors in Table 4.
2

2 2 2

i (s1+s2+.. +sn)

- S4 54 S4
1 2 n
af, tar, T +df>

1 2 n

where df, = sample size minus one for the nth
calibration

2
) [00)? + a0)? + @a.)® + 20)%)

df
ot at ped | ot
5 TT10 T 4 16
_ 640 x10°
23 x 103
- 27.8

Under the "t" column in Table E-1 in the Hand-
book, Appendix E, t is 2.052 for 27 degrees of
freedom and 2. 048 for 28 degrees of freedom.
Interpolating linearly gives a t of 2,049 for 27.8
degrees of freedom.

The calculation of calibration uncertainty (U;) for
the force transducer is then

It

Uy = #(By *1955)

1l

+(0.94 + 2.049 x 28.3)
= +58.91b

Data acquisition bias limit is

B2=i‘/izbiz

" \/ 52+ 52+ (5)2+(5)2 +(0.4)2 + (10)% + (5)

1l

]

+15.0 1b

Data acquisition precision index estimate is

S2=i\/izsi2

N \/ 52+ (5)2 +(5)2 + (5)2 + 202 + (10)2 + (5)2

It

+25.0 1b

Data acquisition uncertainty is

[
|

9 = i(B2 + t95 SZ)

= +(15.0 + 2 x 25.0)

65.0 1b

tgs = 2.00 because df > 30 for S2

10.

11.

12.

13.

Data reduction bias limit is

B3=*\/Zbi2
i

+10.0 lb

Data reduction precision index estimate is

/ 2
53::1: ZSI
1

=0

Data reduction uncertainty is

U3 i(B3 + t95 SS)

+(10 + 0.0)

1]

=£10.0 1b

Force measurement bias limit is

2
3

_— \/(o. 9)2 + (15)2 + (10)2

==18.11b

_ 2 2
BF—i B1+B2+B

Force measurement precision index estimate is

S

2 .2 .2
F-*\/51 %8, %8,

:t\/(28. 3)2 + (25)2 + 02

+37.8 1b
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Degrees of freedom for force measurement are

2
(s2+sz+sz)
81 Sy * 5
M =
51 S5 8§

1 4y g
2
_les. 3% + 252

es.3? | @5t
27.8 81

= 57
Force measurement uncertainty is
Up = j:(BF + g5 SF)

= £(18.1 +2.00 x 37.8) dfp =57, tg. = 2.00

95
=+93.7 1b

Propagation of Measurement Error

Rarely are performance parameters measured

directly; usually more basic quantities such as tempera-
ture, force, pressure, and fuel flow are measured, and



the performance parameter is calculated as a function of
the measurements. Error in the measurements is prop-
agated to the parameter through the function. The effect
of the propagation may be approximated with the Taylor's
series methods.

The goal of any analysis of measurement system
errors is to determine the resulting errors in the re-
duced parameters, for example TSFC, which is calcu-
lated as the ratio of fuel flow (Wyp) to net thrust (Fy);
TSFC = W¢/Fy. The technique for relating the errors
of measurement to the errors in the reduced parameters
is based on a Taylor's Series expansion from the calculus.
The Taylor's expression for errors in thrust specific
fuel consumption is

dTSFC

. OTSFC
= AW

ATSFC= t
f aFN

1
AFN = FN AWf—;— AF
N
Where dTSFC/dWg and dTSFC/dFy are the partial
derivatives of thrust specific fuel consumption with re-
spect to fuel flow and net thrust. The precision index is
approximated by

Stsrc = \/(irvsvfc SWf>2 @TeSF-r—C SF>2
D
\/(SWf> * <F ! SF>

For example, the following hypothetical data were used
to estimate thrust specific fuel consumption uncertainty:

Bias Precision Degrees of Uncertainty
Parameter Nominal Limit Index Freedom Limit
Thrust (Fy) 10,000 18.1 Ib, 37.81 57 93.7 Ibg
Fuel Flow (Wy) 10,000 50 lbp,/hr 50 lb /br 60 150 by, /hr

The nominal thrust specific fuel consumption is calcu-
lated from W¢/Fy:

Wf 100600 [b ghr
A T AN,

Fy 10,000 1lbg

=1,01b_ /lbe~hr
N m’ - f

The precision index of thrust specific fuel consumption
is

1 2 -Wy 2
Stsrc = \/ \Fy “wi) T2 SFN
N
2 2
50 -10, 000
+ . x 37.8
\/<1o, 000> (_‘ 0,0002 >
+0, 0063 1by, /Toghr
The propagation formula is similar for bias
B latsFe , ¥ ,fomsrc , Y
TSFC \/\ oW; Wi FN-— FN
Wf 2
Brsrc = BWf Bry
2
10, 000
TSFC \/(10, 000> * <10, 0002 18. 1>

= 0, 0053 lbm/lbf—hr

The degrees of freedom for the TSFC precision
index can be found using the Welch-Satterthwaite tech-
nique. In this situation, the partial derivative weighting
factors, which are used in the calculation of the preci-
sion index, must also be used in the Welch~Satterthwaite
formula. Note: The calculation is carried out to illus-
trate the use of the partial derivatives with the Welch~
Satterthwaite. It is not necessary to calculate the de-
grees of freedom for TSFC since the degrees of freedom
for thrust and fuel flow are 57 and 60, respectively. The
expected minimum result would be 57. The t multiple is
essentially 2.0 for degrees of freedom greater than 30.
When the degrees of freedom for each component are
greater than 30, the Welch-Satterthwaite procedure can
be omitted and t = 2.0 can be used,

9TSFC . 2, [oTSFC  \2|?
aw, Wi - F FN
AN N

dfrspc
TSFC * f aTsFC . 4
Wy 9Fy N

GWf

afyy,

L 2 -W, 212
= Sw + | 3= SF
4 < -W )4
+- Sw 5 SF
FN f Fg N
dfyy,

dfFN

dfpy

2 212
Km—looox 50> +<;1—0’0—0(2)x37.8> J
) , 10,000 |

T 1
( 1 xso) 10 ooox37.8)
10, 000 . <10,ooo2

60 57

=110
The t value is 2, and the uncertainty is
U = £(B+tg58) = £[0. 0053+ (2. 0)(0.0063)]
= 20,0179 lby,/lbg-hr

The results of the error analysis are presented in
Table 5.

The uncertainty limit as a percentage of the nomi-
nal value may be calculated by dividing the uncertainty
limit in engineering units by the corresponding nominal
value and then multiplying by 100.

The handbook illustrates the uncertainty in several
other turbine engine measured and performance param-
eters such as fuel flow, pressure, temperature, airflow,
and net thrust, The Handbook also contains a Special
Methods section treating special situations or conditions
and an Appendix containing information on precision in-
dex for uniform distribution of error, propagation of
errors by Taylor's Series, estimates of the precision
index from multiple measurements, outlier detection
schemes, and some statistical tables.

We believe that the methods we have presented
represent the best technology available. The uncertainty
model is the product of years of research in that the



model has as its beginning the ICRPG work. The model Society of Mechanical Engineers (ASME), The American
represents the efforts of many organizations. We hope Institute of Aeronautics and Astronautics, and the Inter-
that you will respond with constructive criticism for the national Standards Organizations expressed interest and

continued improvement of this model.
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and Connecticut facilities, provided the authors with measurement uncertainty model; the Handbook on Un-
constructive and spirited criticism in every section. certainty in Gas Turbine Measurements is recommended
Various technical committees under the American to you for a more detailed and comprehensive treatment.

Table 5. Uncertainty Components

Nominal Precision Degrees of
Parameter Value Bias Limit Error Freedom Uncertainty
Thrust, FN 10,000 lbf 18.1 lbf 37.8 lbf 57 93.7 lbf
Fuel Flow, Wy 10,000 by, /hr 50 1b,, /hr 50 lby, /hr 60 150 b, /hr

Thrust Specific 1.0 1b, /lbg-hr  0.0053 lby,/Ibg-hr  0.0063 lby, /Ibg-hr 110 0.018 lby,/lbg-hr

Fuel Consumption

Table 6. Logic Decision Diagram
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Table 6.

Logic Decision Diagram (continued)

To Estimate Use Formula

tos Value Degrees of Freedom Interpolate in Two-Tailed
Less Than 30 (df < 30) Student's "'t Table for t
Degrees of Freedom' Uset=2.0
Greater Than or Equal
to 30 (df >30)

Uncertainty

1. Elemental

2, Measurement

3. Performance
Parameter

Elemental Bias Limit
and Precision Index

Measurement Bias Limits
and Precision Indices

Performance Parameter
Bias Limit and Precision
Index

Ui + [Bi + t95 Si]

U

I

jiﬁ+%ﬂ

Ur = *[BF +tg5 SF]




